Monday, 15 May 2017

Gleitende Durchschnittliche Modellzeitreihen

Autoregressive Moving Average ARMA (p, q) Modelle für die Zeitreihenanalyse - Teil 3 Von Michael Halls-Moore am 7. September 2015 Dies ist der dritte und letzte Beitrag in der Mini-Serie für autoregressive Moving Average (ARMA) Modelle für Zeitreihen Analyse. Weve eingeführt Autoregressive Modelle und Moving Average Modelle in den beiden vorherigen Artikeln. Jetzt ist es Zeit, sie zu einem anspruchsvolleren Modell zu kombinieren. Letztendlich wird dies zu den ARIMA - und GARCH-Modellen führen, die es uns ermöglichen, die Rendite der Anlagen und die Volatilität der Prognose vorherzusagen. Diese Modelle bilden die Grundlage für Handelssignale und Risikomanagementtechniken. Wenn Sie Teil 1 und Teil 2 gelesen haben, haben Sie gesehen, dass wir dazu neigen, einem Muster für unsere Analyse eines Zeitreihenmodells zu folgen. Ich wiederhole es kurz hier: Grundlagen - Warum interessieren wir uns für dieses bestimmte Modell Definition - Eine mathematische Definition, um Mehrdeutigkeit zu reduzieren. Correlogram - Plotten eines Beispielkorrelogramms, um ein Modellverhalten zu visualisieren. Simulation und Montage - Anpassung des Modells an Simulationen, um sicherzustellen, dass wir das Modell richtig verstanden haben. Echte Finanzdaten - Anwenden des Modells auf reale historische Vermögenspreise. Vorhersage - Prognostieren Sie nachfolgende Werte, um Handelssignale oder Filter aufzubauen. Um diesem Artikel zu folgen, ist es ratsam, einen Blick auf die früheren Artikel zur Zeitreihenanalyse zu werfen. Sie können alle hier gefunden werden. Bayesian Information Criterion Im Teil 1 dieser Artikel-Serie haben wir das Akaike Information Criterion (AIC) als Mittel zur Unterstützung der Wahl zwischen den einzelnen besten Zeitreihenmodellen betrachtet. Ein eng verwandtes Werkzeug ist das Bayesian Information Criterion (BIC). Im Wesentlichen hat es ein ähnliches Verhalten wie die AIC, dass es Modelle mit zu vielen Parametern bestraft. Dies kann zu Überbeanspruchungen führen. Der Unterschied zwischen der BIC und AIC ist, dass die BIC ist strenger mit seiner Bestrafung von zusätzlichen Parametern. Bayesian Information Criterion Wenn wir die Likelihood-Funktion für ein statistisches Modell mit k Parametern und L die Wahrscheinlichkeit maximieren. Dann ist das Bayessche Informationskriterium gegeben durch: wobei n die Anzahl der Datenpunkte in der Zeitreihe ist. Bei der Auswahl geeigneter ARMA (p, q) Modelle werden wir den AIC und den BIC verwenden. Ljung-Box Test In Teil 1 dieser Artikel-Serie Rajan erwähnt in der Disqus kommentiert, dass die Ljung-Box-Test war besser geeignet als mit dem Akaike Information Criterion des Bayesian Information Criterion bei der Entscheidung, ob ein ARMA-Modell war eine gute Passform zu einer Zeit Serie. Der Ljung-Box-Test ist ein klassischer Hypothesentest, der dazu dient, zu testen, ob sich ein Satz von Autokorrelationen eines eingebauten Zeitreihenmodells signifikant von Null unterscheidet. Der Test testet nicht jede einzelne Verzögerung nach Zufälligkeit, sondern testet die Zufälligkeit über eine Gruppe von Verzögerungen. Ljung-Box-Test Wir definieren die Nullhypothese als: Die Zeitreihendaten bei jeder Verzögerung sind i. i.d .. das heißt, die Korrelationen zwischen den Populationsreihenwerten sind Null. Wir definieren die alternative Hypothese als: Die Zeitreihendaten sind nicht i. i.d. Und besitzen serielle Korrelation. Wir berechnen die folgende Teststatistik. Q: Wenn n die Länge der Zeitreihenprobe ist, ist k die Stichprobe Autokorrelation bei der Verzögerung k und h die Anzahl der Verzögerungen unter dem Test. Die Entscheidungsregel, ob die Nullhypothese zurückgewiesen werden soll, besteht darin, zu überprüfen, ob Q gt chi2 für eine chi-quadrierte Verteilung mit h Freiheitsgraden am 100 (1-alpha) - ten Perzentil ist. Während die Details des Tests etwas kompliziert erscheinen können, können wir in der Tat R verwenden, um den Test für uns zu berechnen und das Verfahren etwas zu vereinfachen. Autogressive Moving Average (ARMA) Modelle der Ordnung p, q Nun, da wir über den BIC und den Ljung-Box-Test diskutierten, waren wir bereit, unser erstes gemischtes Modell, nämlich den autoregressiven Moving Average der Ordnung p, q oder ARMA (p, Q). Bisher haben wir autoregressive Prozesse und gleitende Durchschnittsprozesse in Betracht gezogen. Das frühere Modell betrachtet sein eigenes Verhalten in der Vergangenheit als Input für das Modell und als solche Versuche, Marktteilnehmer-Effekte, wie Impuls und Mittelwert-Reversion im Aktienhandel zu erfassen. Das letztere Modell wird verwendet, um Schock Informationen zu einer Serie zu charakterisieren, wie eine Überraschung Einkommen Ankündigung oder unerwartete Ereignis (wie die BP Deepwater Horizon Ölpest). Daher versucht ein ARMA-Modell, diese beiden Aspekte bei der Modellierung finanzieller Zeitreihen zu erfassen. Beachten Sie, dass ein ARMA-Modell nicht berücksichtigt Volatilität Clustering, ein wesentliches empirische Phänomene von vielen finanziellen Zeitreihen. Es ist kein bedingt heteroszendierendes Modell. Dafür müssen wir auf die ARCH - und GARCH-Modelle warten. Definition Das ARMA-Modell (p, q) ist eine lineare Kombination zweier linearer Modelle und somit selbst noch linear: Autoregressives Moving Average Modell der Ordnung p, q Ein Zeitreihenmodell ist ein autoregressives gleitendes Durchschnittsmodell der Ordnung p, q . ARMA (p, q), wenn: Anfang xt alpha1 x alpha2 x ldots wt beta1 w beta2 w ldots betaq w end Wo ist weißes Rauschen mit E (wt) 0 und Varianz sigma2. Wenn wir den Backward Shift Operator betrachten. (Siehe vorhergehender Artikel) können wir das obige als Funktion theta und phi folgendermaßen umschreiben: Wir können einfach erkennen, dass wir durch die Einstellung von p neq 0 und q0 das AR (p) - Modell erhalten. Wenn wir p 0 und q neq 0 setzen, erhalten wir das MA (q) - Modell. Eines der wichtigsten Merkmale des ARMA-Modells ist, dass es sparsam und redundant in seinen Parametern ist. Das heißt, ein ARMA-Modell erfordert häufig weniger Parameter als ein AR (p) - oder MA (q) - Modell alleine. Darüber hinaus, wenn wir die Gleichung in Bezug auf die BSO umschreiben, dann die theta und phi Polynome können manchmal gemeinsam einen gemeinsamen Faktor, so dass ein einfacheres Modell. Simulationen und Correlogramme Wie bei den autoregressiven und gleitenden Durchschnittsmodellen simulieren wir nun verschiedene ARMA-Serien und versuchen dann, ARMA-Modelle an diese Realisierungen anzupassen. Wir führen dies aus, weil wir sicherstellen wollen, dass wir das Anpassungsverfahren verstehen, einschließlich der Berechnung von Konfidenzintervallen für die Modelle sowie sicherzustellen, dass das Verfahren tatsächlich vernünftige Schätzungen für die ursprünglichen ARMA-Parameter wiederherstellt. In Teil 1 und Teil 2 haben wir manuell die AR - und MA-Serie konstruiert, indem wir N Abtastwerte aus einer Normalverteilung ziehen und dann das spezifische Zeitreihenmodell unter Verwendung von Verzögerungen dieser Abtastwerte herstellen. Allerdings gibt es einen einfacheren Weg, um AR-, MA-, ARMA - und sogar ARIMA-Daten zu simulieren, einfach durch die Verwendung der arima. sim-Methode in R. Wir beginnen mit dem einfachsten nicht-trivialen ARMA-Modell, nämlich dem ARMA (1,1 ) - Modell. Das heißt, ein autoregressives Modell der Ordnung eins kombiniert mit einem gleitenden Durchschnittsmodell der Ordnung eins. Ein solches Modell weist nur zwei Koeffizienten alpha und beta auf, die die ersten Verzögerungen der Zeitreihe selbst und die schockweißen Rauschterme darstellen. Ein solches Modell ist gegeben durch: Wir müssen die Koeffizienten vor der Simulation angeben. Lets take alpha 0.5 und beta -0.5: Die Ausgabe ist wie folgt: Lets auch das Korrektogramm zeichnen: Wir können sehen, dass es keine signifikante Autokorrelation, die von einem ARMA (1,1) - Modell erwartet wird. Schließlich können wir versuchen, die Koeffizienten und deren Standardfehler mit Hilfe der Arimafunktion zu bestimmen: Wir können die Konfidenzintervalle für jeden Parameter mit Hilfe der Standardfehler berechnen: Die Konfidenzintervalle enthalten die wahren Parameterwerte für beide Fälle 95 Konfidenzintervalle sehr breit sind (eine Folge der hinreichend großen Standardfehler). Jetzt versuchen wir ein ARMA (2,2) Modell. Das heißt, ein AR (2) - Modell kombiniert mit einem MA (2) - Modell. Für dieses Modell müssen wir vier Parameter angeben: alpha1, alpha2, beta1 und beta2. Nehmen wir alpha1 0.5, alpha2-0.25 beta10.5 und beta2-0.3: Die Ausgabe unseres ARMA (2,2) - Modells ist wie folgt: Und die entsprechende autocorelation: Wir können nun versuchen, ein ARMA (2,2) - Modell an Die Daten: Wir können auch die Konfidenzintervalle für jeden Parameter berechnen: Beachten Sie, dass die Konfidenzintervalle für die Koeffizienten für die gleitende Durchschnittskomponente (beta1 und beta2) nicht tatsächlich den ursprünglichen Parameterwert enthalten. Dies beschreibt die Gefahr des Versuchens, Modelle an Daten anzupassen, auch wenn wir die wahren Parameterwerte kennen. Für Handelszwecke benötigen wir jedoch nur eine Vorhersagekraft, die den Zufall übertrifft und genügend Gewinn über die Transaktionskosten erzeugt, um rentabel zu sein auf lange Sicht. Nun, da wir einige Beispiele für simulierte ARMA-Modelle gesehen haben, brauchen wir Mechanismus für die Auswahl der Werte von p und q bei der Anpassung an die Modelle zu echten Finanzdaten. Auswahl des besten ARMA-Modells (p, q) Um zu bestimmen, welche Ordnung p, q des ARMA-Modells für eine Reihe geeignet ist, müssen wir die AIC (oder BIC) über eine Teilmenge von Werten für p, q und verwenden Dann den Ljung-Box-Test anwenden, um zu bestimmen, ob eine gute Passung für bestimmte Werte von p, q erzielt worden ist. Um diese Methode zu zeigen, werden wir zunächst einen speziellen ARMA (p, q) Prozess simulieren. Wir werden dann alle paarweisen Werte von p in und qin durchschleifen und die AIC berechnen. Wir wählen das Modell mit dem niedrigsten AIC aus und führen dann einen Ljung-Box-Test auf die Residuen durch, um festzustellen, ob wir eine gute Passform erreicht haben. Zunächst wird eine ARMA (3,2) - Serie simuliert: Wir werden nun ein Objekt final erstellen, um den besten Modell-Fit und den niedrigsten AIC-Wert zu speichern. Wir schleifen über die verschiedenen p, q-Kombinationen und verwenden das aktuelle Objekt, um die Anpassung eines ARMA (i, j) - Modells für die Schleifenvariablen i und j zu speichern. Wenn der aktuelle AIC kleiner als irgendein vorher berechneter AIC ist, setzen wir die letzte AIC auf diesen aktuellen Wert und selektieren diese Reihenfolge. Nach Beendigung der Schleife haben wir die Reihenfolge der in final. order gespeicherten ARMA-Modelle, und die ARIMA (p, d, q) passen sich an (mit der integrierten d-Komponente auf 0 gesetzt), die als final. arma gespeichert ist , Ordnung und ARIMA-Koeffizienten: Wir können sehen, dass die ursprüngliche Ordnung des simulierten ARMA-Modells wiederhergestellt wurde, nämlich mit p3 und q2. Wir können das Corelogramm der Residuen des Modells darstellen, um zu sehen, ob sie wie eine Realisierung von diskreten weißen Rauschen (DWN) aussehen: Das Corelogramm sieht tatsächlich wie eine Realisierung von DWN aus. Schließlich führen wir den Ljung-Box-Test für 20 Verzögerungen durch, um dies zu bestätigen: Beachten Sie, dass der p-Wert größer als 0,05 ist, was besagt, dass die Residuen auf dem 95-Level unabhängig sind und somit ein ARMA-Modell (3,2) Gutes Modell passend. Offensichtlich sollte dies der Fall sein, da wir die Daten selbst simuliert haben. Dies ist jedoch genau das Verfahren, das wir verwenden werden, wenn wir ARMA (p, q) - Modelle im folgenden Abschnitt zum SampP500-Index passen. Finanzdaten Nachdem wir nun das Verfahren zur Auswahl des optimalen Zeitreihenmodells für eine simulierte Serie skizziert haben, ist es relativ einfach, diese auf Finanzdaten anzuwenden. Für dieses Beispiel wollen wir erneut den SampP500 US Equity Index wählen. Wir können die täglichen Schlusskurse unter Verwendung von quantmod herunterladen und dann den Protokoll-Rücklauf-Stream erzeugen: Mit dem AIC können Sie das gleiche Anpassungsverfahren wie für die oben beschriebene simulierte ARMA (3,2) - Reihe des SampP500 durchführen: Das am besten passende Modell Hat die Ordnung ARMA (3,3): Hier können die Residuen des angepassten Modells dem SampP500 log täglichen Retourenstrom zugewiesen werden: Beachten Sie, dass es einige signifikante Peaks gibt, vor allem bei höheren Lags. Dies deutet auf eine schlechte Passform hin. Wir können einen Ljung-Box-Test durchführen, um festzustellen, ob wir statistische Beweise dafür haben: Wie wir vermuteten, ist der p-Wert kleiner als 0,05 und als solche können wir nicht sagen, dass die Residuen eine Realisierung von diskreten weißen Rauschen sind. Daher gibt es eine zusätzliche Autokorrelation in den Residuen, die nicht durch das eingebaute ARMA (3,3) - Modell erklärt wird. Next Steps Wie wir in dieser Artikelreihe besprochen haben, haben wir in den SampP500-Serien, insbesondere in den Perioden 2007-2008, Hinweise auf bedingte Heterosedastizität (Volatilitäts-Clustering) gefunden. Wenn wir ein GARCH-Modell später in der Artikel-Serie verwenden, werden wir sehen, wie diese Autokorrelationen zu beseitigen. In der Praxis sind ARMA-Modelle nie generell gut für Log-Aktien-Renditen. Wir müssen die bedingte Heterosedastizität berücksichtigen und eine Kombination von ARIMA und GARCH verwenden. Der nächste Artikel wird ARIMA betrachten und zeigen, wie die integrierte Komponente unterscheidet sich von der ARMA-Modell, das wir in diesem Artikel betrachtet haben. Michael Halls-Moore Mike ist der Begründer von QuantStart und seit fünf Jahren in der quantitativen Finanzbranche tätig, vorwiegend als Quant-Entwickler und später als Quant-Trader-Consulting für Hedgefonds. Verwandte Artikel 8.4 Verschieben von Durchschnittsmodellen Anstatt vergangene Werte der Prognosedatei in einer Regression zu verwenden, verwendet ein gleitendes Durchschnittsmodell vergangene Prognosefehler in einem Regressionsmodell. Y c et the theta e dots theta e, wobei et weißes Rauschen ist. Wir bezeichnen dies als MA (q) - Modell. Natürlich haben wir nicht beobachten die Werte von et, so ist es nicht wirklich Regression im üblichen Sinne. Beachten Sie, dass jeder Wert von yt gedacht als ein gewichteter gleitender Durchschnitt der letzten Prognosefehler werden kann. Allerdings sollten durchschnittlich Modelle bewegen sich nicht zu verwechseln mit einer durchschnittlichen Glättung bewegen wir uns in Kapitel 6. Ein gleitender Durchschnitt Modell diskutiert wird für die Vorhersage zukünftiger Werte verwendet, während gleitenden Durchschnitt Glättung zur Abschätzung des Trend-Zyklus von früheren Werten verwendet wird. Abbildung 8.6: Zwei Beispiele von Daten aus gleitenden Durchschnitt Modelle mit unterschiedlichen Parametern. Links: MA (1) mit yt 20e t 0,8e t-1. Rechts: MA (2) mit y t e t - e t-1 0,8e t-2. In beiden Fällen ist e t normalerweise weißes Rauschen mit Mittelwert Null und Varianz eins verteilt. Abbildung 8.6 zeigt einige Daten aus einem MA (1) - Modell und einem MA (2) - Modell. Das Ändern der Parameter theta1, dots, thetaq führt zu unterschiedlichen Zeitreihenmustern. Wie bei autoregressive Modelle, wird die Varianz des Fehlerterms et nur den Maßstab der Serie ändern, nicht die Muster. Es ist möglich, jedes stationäre AR (p) - Modell als MA (infty) - Modell zu schreiben. Zum Beispiel wiederholte Substitution, können wir dies für ein AR (1) Modell zeigen: begin yt amp phi1y et amp PHI1 (phi1y e) et amp phi12y phi1 e et amp phi13y phi12e phi1 e et amptext Ende bereitgestellt -1 lt phi1 lt 1 wird der Wert von phi1k kleiner, wenn k größer wird. So schließlich erhalten wir yt et phi1 e phi12 e phi13 e cdots, MA (infty) Prozess. Das umgekehrte Ergebnis gilt, wenn wir den MA-Parametern einige Einschränkungen auferlegen. Dann wird das MA-Modell invertierbar. Das heißt, dass wir alle invertierbaren MA (q) Prozess als AR (infty) Prozess schreiben können. Invertible Modelle sind nicht einfach, damit wir von MA-Modellen auf AR-Modelle umwandeln können. Sie haben auch einige mathematische Eigenschaften, die sie in der Praxis einfacher zu verwenden. Die Invertibilitätsbedingungen sind den stationären Einschränkungen ähnlich. Für ein MA (1) Modell: -1lttheta1lt1. Für ein MA (2) - Modell: -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. Kompliziertere Bedingungen gelten für qge3. Wiederum wird R diese Einschränkungen bei der Schätzung der Modelle berücksichtigen.2.1 Moving Average Models (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und / oder gleitende Durchschnittsterme enthalten. In Woche 1 erlernten wir einen autoregressiven Term in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Beispielsweise ist ein autoregressiver Term der Verzögerung 1 x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende Durchschnittsterme. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Es sei n (0, sigma2w) überschritten, was bedeutet, daß die wt identisch unabhängig voneinander verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das durch MA (1) bezeichnete gleitende Durchschnittsmodell der 1. Ordnung ist (xt mu wt theta1w) Das durch MA (2) bezeichnete gleitende Durchschnittsmodell der zweiten Ordnung ist (xt mu wt theta1w theta2w) Das gleitende Mittelmodell der q-ten Ordnung , Mit MA (q) bezeichnet, ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (nicht quadrierten) Ausdrücke in Formeln für ACFs und Abweichungen umwandelt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Vorzeichen verwendet worden sind, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Vorzeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Proben-ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) - Modell. Für interessierte Studierende, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handout. Beispiel 1 Angenommen, dass ein MA (1) - Modell x t 10 w t .7 w t-1 ist. Wobei (wt überstehendes N (0,1)). Somit ist der Koeffizient 1 0,7. Die theoretische ACF wird durch eine Plot dieser ACF folgt folgt. Die graphische Darstellung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis liefert eine Probe gewöhnlich ein solches klares Muster. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1) war. Für diese Simulation folgt ein Zeitreihen-Diagramm der Probendaten. Wir können nicht viel von dieser Handlung erzählen. Die Proben-ACF für die simulierten Daten folgt. Wir sehen eine Spitze bei Verzögerung 1, gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Es ist zu beachten, dass das Beispiel-ACF nicht mit dem theoretischen Muster des zugrunde liegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sein werden Eine andere Probe hätte eine geringfügig unterschiedliche Probe ACF wie unten gezeigt, hätte aber wahrscheinlich die gleichen breiten Merkmale. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) - Modell Für das MA (2) - Modell sind die theoretischen Eigenschaften die folgenden: Die einzigen Werte ungleich Null im theoretischen ACF sind für die Lags 1 und 2. Autokorrelationen für höhere Lags sind 0 , So zeigt ein Beispiel-ACF mit signifikanten Autokorrelationen bei Lags 1 und 2, aber nicht signifikante Autokorrelationen für höhere Lags ein mögliches MA (2) - Modell. Iid N (0,1). Die Koeffizienten betragen 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, wird der theoretische ACF nur bei den Verzögerungen 1 und 2 Werte ungleich Null aufweisen. Werte der beiden Nicht-Autokorrelationen sind A-Kurve des theoretischen ACF. Wie fast immer der Fall ist, verhalten sich Musterdaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Beispielwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wobei wt iid N (0,1) ist. Die Zeitreihenfolge der Daten folgt. Wie bei dem Zeitreihenplot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Proben-ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) - Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei Lags 1 und 2, gefolgt von nicht signifikanten Werten für andere Lags. Beachten Sie, dass aufgrund des Stichprobenfehlers das Muster ACF nicht genau dem theoretischen Muster entsprach. ACF für allgemeine MA (q) - Modelle Eine Eigenschaft von MA (q) - Modellen besteht im Allgemeinen darin, dass Autokorrelationen ungleich Null für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q vorhanden sind. Nicht-Eindeutigkeit der Verbindung zwischen Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) - Modell für einen Wert von 1. Die reziproke 1/1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0.5 für 1. Und dann 1 / (0,5) 2 für 1 verwenden. Youll erhalten (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung als Invertibilität zu befriedigen. Wir beschränken MA (1) - Modelle auf Werte mit einem Absolutwert von weniger als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, während 1 1 / 0,5 2 nicht. Invertibilität von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch Konvergenz meinen wir, dass die AR-Koeffizienten auf 0 sinken, wenn wir in der Zeit zurückgehen. Invertibilität ist eine Einschränkung, die in Zeitreihensoftware programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Begriffen abzuschätzen. Sein nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertibilitätsbeschränkung für MA (1) - Modelle finden Sie im Anhang. Fortgeschrittene Theorie Anmerkung. Für ein MA (q) - Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten Werte haben, daß die Gleichung 1- 1 y-. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 wurde der theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die R-Befehle, die verwendet wurden, um den theoretischen ACF aufzuzeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens lags, die im Bereich von 0 bis 10 liegt (H0) fügt dem Diagramm eine horizontale Achse hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Genannt acfma1 (unsere Wahl des Namens). Der Plotbefehl (der dritte Befehl) verläuft gegen die ACF-Werte für die Verzögerungen 1 bis 10. Der ylab-Parameter kennzeichnet die y-Achse und der Hauptparameter einen Titel auf dem Plot. Um die Zahlenwerte der ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und Diagramme wurden mit den folgenden Befehlen durchgeführt. (N150, list (mac (0.7))) Simuliert n 150 Werte aus MA (1) xxc10 addiert 10 zum Mittelwert 10. Simulationsvorgaben bedeuten 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurde der theoretische ACF des Modells xt 10 wt. 5 w t-1 .3 w t-2 aufgetragen. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 Plot (lags, acfma2, xlimc (1,10), ylabr, typh, main ACF für MA (2) mit theta1 0,5, (X, x) (x, x) (x, x, x, y) (1) Für interessierte Studierende sind hier Beweise für die theoretischen Eigenschaften des MA (1) - Modells. Variante: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1 der vorhergehende Ausdruck 1 w 2. Für irgendeinen h 2 ist der vorhergehende Ausdruck 0 Der Grund dafür ist, dass, durch Definition der Unabhängigkeit der wt. E (w k w j) 0 für beliebige k j. Da w w die Mittelwerte 0, E (w j w j) E (w j 2) w 2 haben. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um den oben angegebenen ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so daß die AR-Koeffizienten gegen 0 konvergieren, wenn wir unendlich zurück in der Zeit bewegen. Gut zeigen Invertibilität für die MA (1) - Modell. Dann setzen wir die Beziehung (2) für wt-1 in Gleichung (1) (3) ein (zt wt theta1 (z-therma1w) wt theta1z - theta2w) Zum Zeitpunkt t-2. Gleichung (2) wird dann in Gleichung (3) die Gleichung (4) für wt-2 ersetzen (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Unendlich), erhalten wir das unendliche Ordnungs-AR-Modell (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z vergrößern, (unendlich) in der Größe zunehmen werden Zeit. Um dies zu verhindern, benötigen wir 1 lt1. Dies ist die Bedingung für ein invertierbares MA (1) - Modell. Unendlich Ordnung MA Modell In Woche 3, gut sehen, dass ein AR (1) Modell in ein unendliches order MA Modell umgewandelt werden kann: (xt - mu wt phi1w phi21w Punkte phik1 w Punkte sum phij1w) Diese Summation der Vergangenheit weißer Rauschbegriffe ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Anforderung für eine stationäre AR (1) ist, dass 1 lt1. Berechnen Sie die Var (x t) mit der kausalen Darstellung. Dieser letzte Schritt verwendet eine Grundtatsache über geometrische Reihen, die (phi1lt1) erforderlich sind, ansonsten divergiert die Reihe. NavigationAutoregressive Moving Average ARMA (p, q) Modelle für die Zeitreihenanalyse - Teil 3 Von Michael Halls-Moore am 7. September 2015 Dies ist der dritte und letzte Beitrag in der Mini-Serie auf autoregressive Moving Average (ARMA) Modelle für Zeitreihen Analyse. Weve eingeführt Autoregressive Modelle und Moving Average Modelle in den beiden vorherigen Artikeln. Jetzt ist es Zeit, sie zu einem anspruchsvolleren Modell zu kombinieren. Letztendlich wird dies zu den ARIMA - und GARCH-Modellen führen, die es uns ermöglichen, die Rendite der Anlagen und die Volatilität der Prognose vorherzusagen. Diese Modelle bilden die Grundlage für Handelssignale und Risikomanagementtechniken. Wenn Sie Teil 1 und Teil 2 gelesen haben, haben Sie gesehen, dass wir dazu neigen, ein Muster für unsere Analyse eines Zeitreihenmodells zu folgen. Ich wiederhole es kurz hier: Grundlagen - Warum interessieren wir uns für dieses bestimmte Modell Definition - Eine mathematische Definition, um Mehrdeutigkeit zu reduzieren. Correlogram - Plotten eines Beispielkorrelogramms, um ein Modellverhalten zu visualisieren. Simulation und Montage - Anpassung des Modells an Simulationen, um sicherzustellen, dass wir das Modell richtig verstanden haben. Echte Finanzdaten - Anwenden des Modells auf reale historische Vermögenspreise. Vorhersage - Prognostieren Sie nachfolgende Werte, um Handelssignale oder Filter aufzubauen. Um diesem Artikel zu folgen, ist es ratsam, einen Blick auf die früheren Artikel zur Zeitreihenanalyse zu werfen. Sie können alle hier gefunden werden. Bayesian Information Criterion Im Teil 1 dieser Artikel-Serie haben wir das Akaike Information Criterion (AIC) als Mittel zur Unterstützung der Wahl zwischen den einzelnen besten Zeitreihenmodellen betrachtet. Ein eng verwandtes Werkzeug ist das Bayesian Information Criterion (BIC). Im Wesentlichen hat es ein ähnliches Verhalten wie die AIC, dass es Modelle mit zu vielen Parametern bestraft. Dies kann zu Überbeanspruchungen führen. Der Unterschied zwischen der BIC und AIC ist, dass die BIC ist strenger mit seiner Bestrafung von zusätzlichen Parametern. Bayesian Information Criterion Wenn wir die Likelihood-Funktion für ein statistisches Modell mit k Parametern und L die Wahrscheinlichkeit maximieren. Dann ist das Bayessche Informationskriterium gegeben durch: wobei n die Anzahl der Datenpunkte in der Zeitreihe ist. Bei der Auswahl geeigneter ARMA (p, q) Modelle werden wir den AIC und den BIC verwenden. Ljung-Box Test In Teil 1 dieser Artikel-Serie Rajan erwähnt in der Disqus kommentiert, dass die Ljung-Box-Test war besser geeignet als mit dem Akaike Information Criterion des Bayesian Information Criterion bei der Entscheidung, ob ein ARMA-Modell war eine gute Passform zu einer Zeit Serie. Der Ljung-Box-Test ist ein klassischer Hypothesentest, der dazu dient, zu testen, ob sich ein Satz von Autokorrelationen eines eingebauten Zeitreihenmodells signifikant von Null unterscheidet. Der Test testet nicht jede einzelne Verzögerung nach Zufälligkeit, sondern testet die Zufälligkeit über eine Gruppe von Verzögerungen. Ljung-Box-Test Wir definieren die Nullhypothese als: Die Zeitreihendaten bei jeder Verzögerung sind i. i.d .. das heißt, die Korrelationen zwischen den Populationsreihenwerten sind Null. Wir definieren die alternative Hypothese als: Die Zeitreihendaten sind nicht i. i.d. Und besitzen serielle Korrelation. Wir berechnen die folgende Teststatistik. Q: Wenn n die Länge der Zeitreihenprobe ist, ist k die Stichprobe Autokorrelation bei der Verzögerung k und h die Anzahl der Verzögerungen unter dem Test. Die Entscheidungsregel, ob die Nullhypothese zurückgewiesen werden soll, besteht darin, zu überprüfen, ob Q gt chi2 für eine chi-quadrierte Verteilung mit h Freiheitsgraden am 100 (1-alpha) - ten Perzentil ist. Während die Details des Tests etwas kompliziert erscheinen können, können wir in der Tat R verwenden, um den Test für uns zu berechnen und das Verfahren etwas zu vereinfachen. Autogressive Moving Average (ARMA) Modelle der Ordnung p, q Nun, da wir über den BIC und den Ljung-Box-Test diskutierten, waren wir bereit, unser erstes gemischtes Modell, nämlich den autoregressiven Moving Average der Ordnung p, q oder ARMA (p, Q). Bisher haben wir autoregressive Prozesse und gleitende Durchschnittsprozesse in Betracht gezogen. Das frühere Modell betrachtet sein eigenes Verhalten in der Vergangenheit als Input für das Modell und als solche Versuche, Marktteilnehmer-Effekte, wie Impuls und Mittelwert-Reversion im Aktienhandel zu erfassen. Das letztere Modell wird verwendet, um Schock Informationen zu einer Serie zu charakterisieren, wie eine Überraschung Einkommen Ankündigung oder unerwartete Ereignis (wie die BP Deepwater Horizon Ölpest). Daher versucht ein ARMA-Modell, diese beiden Aspekte bei der Modellierung finanzieller Zeitreihen zu erfassen. Beachten Sie, dass ein ARMA-Modell nicht berücksichtigt Volatilität Clustering, eine wichtige empirische Phänomene von vielen finanziellen Zeitreihen. Es ist kein bedingt heteroszendierendes Modell. Dafür müssen wir auf die ARCH - und GARCH-Modelle warten. Definition Das ARMA-Modell (p, q) ist eine lineare Kombination zweier linearer Modelle und somit selbst noch linear: Autoregressives Moving Average Modell der Ordnung p, q Ein Zeitreihenmodell ist ein autoregressives gleitendes Durchschnittsmodell der Ordnung p, q . ARMA (p, q), wenn: Anfang xt alpha1 x alpha2 x ldots wt beta1 w beta2 w ldots betaq w end Wo ist weißes Rauschen mit E (wt) 0 und Varianz sigma2. Wenn wir den Backward Shift Operator betrachten. (Siehe vorhergehender Artikel) können wir das obige als Funktion theta und phi folgendermaßen umschreiben: Wir können einfach erkennen, dass wir durch die Einstellung von p neq 0 und q0 das AR (p) - Modell erhalten. Wenn wir p 0 und q neq 0 setzen, erhalten wir das MA (q) - Modell. Eines der wichtigsten Merkmale des ARMA-Modells ist, dass es sparsam und redundant in seinen Parametern ist. Das heißt, ein ARMA-Modell erfordert oft weniger Parameter als ein AR (p) - oder MA (q) - Modell alleine. Darüber hinaus, wenn wir die Gleichung in Bezug auf die BSO umschreiben, dann die theta und phi Polynome können manchmal gemeinsam einen gemeinsamen Faktor, so dass ein einfacheres Modell. Simulationen und Correlogramme Wie bei den autoregressiven und gleitenden Durchschnittsmodellen simulieren wir nun verschiedene ARMA-Serien und versuchen dann, ARMA-Modelle an diese Realisierungen anzupassen. Wir führen dies aus, weil wir sicherstellen wollen, dass wir das Anpassungsverfahren verstehen, einschließlich der Berechnung von Konfidenzintervallen für die Modelle sowie sicherzustellen, dass das Verfahren tatsächlich vernünftige Schätzungen für die ursprünglichen ARMA-Parameter wiederherstellt. In Teil 1 und Teil 2 haben wir manuell die AR - und MA-Serie konstruiert, indem wir N Abtastwerte aus einer Normalverteilung ziehen und dann das spezifische Zeitreihenmodell unter Verwendung von Verzögerungen dieser Abtastwerte herstellen. Allerdings gibt es einen einfacheren Weg, um AR-, MA-, ARMA - und sogar ARIMA-Daten zu simulieren, einfach durch die Verwendung der arima. sim-Methode in R. Wir beginnen mit dem einfachsten nicht-trivialen ARMA-Modell, nämlich dem ARMA (1,1 ) - Modell. Das heißt, ein autoregressives Modell der Ordnung eins kombiniert mit einem gleitenden Durchschnittsmodell der Ordnung eins. Ein solches Modell weist nur zwei Koeffizienten alpha und beta auf, die die ersten Verzögerungen der Zeitreihe selbst und die schockweißen Rauschterme darstellen. Ein solches Modell ist gegeben durch: Wir müssen die Koeffizienten vor der Simulation angeben. Lets take alpha 0.5 und beta -0.5: Die Ausgabe ist wie folgt: Lets auch das Korrektogramm zeichnen: Wir können sehen, dass es keine signifikante Autokorrelation, die von einem ARMA (1,1) - Modell erwartet wird. Schließlich können wir versuchen, die Koeffizienten und deren Standardfehler mit Hilfe der Arimafunktion zu bestimmen: Wir können die Konfidenzintervalle für jeden Parameter mit Hilfe der Standardfehler berechnen: Die Konfidenzintervalle enthalten die wahren Parameterwerte für beide Fälle 95 Konfidenzintervalle sehr breit sind (eine Folge der hinreichend großen Standardfehler). Jetzt versuchen wir ein ARMA (2,2) Modell. Das heißt, ein AR (2) - Modell kombiniert mit einem MA (2) - Modell. Für dieses Modell müssen wir vier Parameter angeben: alpha1, alpha2, beta1 und beta2. Nehmen wir alpha1 0.5, alpha2-0.25 beta10.5 und beta2-0.3: Die Ausgabe unseres ARMA (2,2) - Modells ist wie folgt: Und die entsprechende autocorelation: Wir können nun versuchen, ein ARMA (2,2) - Modell an Die Daten: Wir können auch die Konfidenzintervalle für jeden Parameter berechnen: Beachten Sie, dass die Konfidenzintervalle für die Koeffizienten für die gleitende Durchschnittskomponente (beta1 und beta2) nicht tatsächlich den ursprünglichen Parameterwert enthalten. Dies beschreibt die Gefahr des Versuchens, Modelle an Daten anzupassen, auch wenn wir die wahren Parameterwerte kennen. Für Handelszwecke benötigen wir jedoch nur eine Vorhersagekraft, die den Zufall übertrifft und genügend Gewinn über die Transaktionskosten erzeugt, um rentabel zu sein auf lange Sicht. Nun, da wir einige Beispiele für simulierte ARMA-Modelle gesehen haben, brauchen wir Mechanismus für die Auswahl der Werte von p und q bei der Anpassung an die Modelle zu echten Finanzdaten. Auswahl des besten ARMA-Modells (p, q) Um zu bestimmen, welche Ordnung p, q des ARMA-Modells für eine Reihe geeignet ist, müssen wir die AIC (oder BIC) über eine Teilmenge von Werten für p, q und verwenden Dann den Ljung-Box-Test anwenden, um zu bestimmen, ob eine gute Passung für bestimmte Werte von p, q erzielt worden ist. Um diese Methode zu zeigen, werden wir zunächst einen speziellen ARMA (p, q) Prozess simulieren. Wir werden dann alle paarweisen Werte von p in und qin durchschleifen und die AIC berechnen. Wir wählen das Modell mit dem niedrigsten AIC aus und führen dann einen Ljung-Box-Test auf die Residuen durch, um festzustellen, ob wir eine gute Passform erreicht haben. Zunächst wird eine ARMA (3,2) - Serie simuliert: Wir werden nun ein Objekt final erstellen, um den besten Modell-Fit und den niedrigsten AIC-Wert zu speichern. Wir schleifen über die verschiedenen p, q-Kombinationen und verwenden das aktuelle Objekt, um die Anpassung eines ARMA (i, j) - Modells für die Schleifenvariablen i und j zu speichern. Wenn der aktuelle AIC kleiner als irgendein vorher berechneter AIC ist, setzen wir die letzte AIC auf diesen aktuellen Wert und selektieren diese Reihenfolge. Nach Beendigung der Schleife haben wir die Reihenfolge der in final. order gespeicherten ARMA-Modelle, und die ARIMA (p, d, q) passen sich an (mit der integrierten d-Komponente auf 0 gesetzt), die als final. arma gespeichert ist , Ordnung und ARIMA-Koeffizienten: Wir können sehen, dass die ursprüngliche Ordnung des simulierten ARMA-Modells wiederhergestellt wurde, nämlich mit p3 und q2. Wir können das Corelogramm der Residuen des Modells darstellen, um zu sehen, ob sie wie eine Realisierung von diskreten weißen Rauschen (DWN) aussehen: Das Corelogramm sieht tatsächlich wie eine Realisierung von DWN aus. Schließlich führen wir den Ljung-Box-Test für 20 Verzögerungen durch, um dies zu bestätigen: Beachten Sie, dass der p-Wert größer als 0,05 ist, was besagt, dass die Residuen auf dem 95-Level unabhängig sind und somit ein ARMA-Modell (3,2) Gutes Modell passend. Offensichtlich sollte dies der Fall sein, da wir die Daten selbst simuliert haben. Dies ist jedoch genau das Verfahren, das wir verwenden werden, wenn wir ARMA (p, q) - Modelle im folgenden Abschnitt zum SampP500-Index passen. Finanzdaten Nachdem wir nun das Verfahren zur Auswahl des optimalen Zeitreihenmodells für eine simulierte Serie skizziert haben, ist es relativ einfach, diese auf Finanzdaten anzuwenden. Für dieses Beispiel wollen wir erneut den SampP500 US Equity Index wählen. Wir können die täglichen Schlusskurse unter Verwendung von quantmod herunterladen und dann den Protokoll-Rücklauf-Stream erzeugen: Mit dem AIC können Sie das gleiche Anpassungsverfahren wie für die oben beschriebene simulierte ARMA (3,2) - Reihe des SampP500 durchführen: Das am besten passende Modell Hat die Ordnung ARMA (3,3): Hier können die Residuen des angepassten Modells dem SampP500 log täglichen Retourenstrom zugewiesen werden: Beachten Sie, dass es einige signifikante Peaks gibt, vor allem bei höheren Lags. Dies deutet auf eine schlechte Passform hin. Wir können einen Ljung-Box-Test durchführen, um festzustellen, ob wir statistische Beweise dafür haben: Wie wir vermuteten, ist der p-Wert kleiner als 0,05 und als solche können wir nicht sagen, dass die Residuen eine Realisierung von diskreten weißen Rauschen sind. Daher gibt es eine zusätzliche Autokorrelation in den Residuen, die nicht durch das eingebaute ARMA (3,3) - Modell erklärt wird. Next Steps Wie wir in dieser Artikelreihe besprochen haben, haben wir in den SampP500-Serien, insbesondere in den Perioden 2007-2008, Hinweise auf bedingte Heterosedastizität (Volatilitäts-Clustering) gefunden. Wenn wir ein GARCH-Modell später in der Artikel-Serie verwenden, werden wir sehen, wie diese Autokorrelationen zu beseitigen. In der Praxis sind ARMA-Modelle nie generell gut für Log-Aktien-Renditen. Wir müssen die bedingte Heterosedastizität berücksichtigen und eine Kombination von ARIMA und GARCH verwenden. Der nächste Artikel wird ARIMA betrachten und zeigen, wie die integrierte Komponente unterscheidet sich von der ARMA-Modell, das wir in diesem Artikel betrachtet haben. Michael Halls-Moore Mike ist der Begründer von QuantStart und seit fünf Jahren in der quantitativen Finanzbranche tätig, vorwiegend als Quant-Entwickler und später als Quant-Trader-Consulting für Hedgefonds. Verwandte ArtikelA Vollständige Tutorial zur Zeitreihe Modellierung in R Einleitung 8216Time8217 ist der wichtigste Faktor, der Erfolg in einem Unternehmen sicherstellt. Es ist schwierig, mit dem Tempo der Zeit Schritt zu halten. Aber, Technologie hat einige leistungsfähige Methoden entwickelt, mit denen wir Dinge vor Augen haben können. Ich mache mir keine Sorgen, ich spreche nicht von Time Machine. Let8217s realistisch hier I8217m sprechen über die Methoden der Vorhersage Amp-Vorhersage. Eine solche Methode, die sich mit zeitbasierten Daten beschäftigt, ist Time Series Modeling. Wie der Name schon sagt, geht es darum, auf Zeit (Jahre, Tage, Stunden, Minuten) basierende Daten zu arbeiten, um versteckte Einsichten zu gewinnen, um fundierte Entscheidungen zu treffen. Zeitreihenmodelle sind sehr nützliche Modelle, wenn Sie seriell korrelierte Daten haben. Die meisten Geschäftshäuser arbeiten auf Zeitreihendaten, um Verkaufszahl für das folgende Jahr zu analysieren, Web site Verkehr, Wettbewerb Position und viel mehr. Allerdings ist es auch einer der Bereiche, die viele Analysten nicht verstehen. Also, wenn Sie aren8217t sicher über vollständige Prozess der Zeitreihen-Modellierung, würde dieser Leitfaden Sie auf verschiedene Ebenen der Zeitreihen-Modellierung und die damit verbundenen Techniken einzuführen. Die folgenden Themen werden in diesem Tutorial behandelt: Grundlagen 8211 Zeitreihenmodellierung Erforschung von Zeitreihen-Daten in R Einführung in die ARMA-Zeitreihe Modellierungsrahmen und Anwendung von ARIMA Zeitreihen Modellierung Zeit für den Einstieg 1. Grundlagen 8211 Zeit Serie Modellierung Let8217s beginnen mit den Grundlagen. Dazu gehören stationäre Serien, zufällige Wanderungen. Rho Koeffizient, Dickey Fuller Test der Stationarität. Wenn diese Begriffe sind bereits Angst Sie, don8217t Sorge 8211 werden sie klar werden, in ein bisschen und ich wette, Sie beginnen das Thema genießen, wie ich es erklären. Stationäre Serie Es gibt drei grundlegende Kriterien für eine Serie als stationäre Serie klassifiziert werden: 1. Der Mittelwert der Serie sollte nicht eine Funktion der Zeit sein, sondern sollte eine Konstante sein. Das Bild unten hat das linke Diagramm, das die Bedingung erfüllt, während das Diagramm in Rot ein zeitabhängiges Mittel hat. 2. Die Varianz der Reihe sollte nicht eine Funktion der Zeit sein. Diese Eigenschaft ist bekannt als Homosedastizität. Die folgende Grafik zeigt, was ist und was nicht eine stationäre Serie. (Beachten Sie die unterschiedliche Verbreitung der Verteilung im rechten Diagramm) 3. Die Kovarianz des i-ten Termes und des (i m) - ten Termes sollte nicht eine Funktion der Zeit sein. In der folgenden Grafik werden Sie feststellen, dass die Spreizung mit zunehmender Zeit näher rückt. Daher ist die Kovarianz nicht konstant mit der Zeit für die 8216red Serie8217. Warum kümmere ich mich um 8216stationarity8217 einer Zeitreihe Der Grund nahm ich diesen Abschnitt zuerst war, dass, bis Ihre Zeitreihe stationär ist, können Sie nicht bauen ein Zeitreihen-Modell. In Fällen, in denen das stationäre Kriterium verletzt wird, wird die erste Voraussetzung, die Zeitreihe zu stationarisieren und dann stochastische Modelle zu versuchen, diese Zeitreihen vorherzusagen. Es gibt mehrere Möglichkeiten, diese Stationarität zu bringen. Einige von ihnen sind Detrending, Differencing etc. Random Walk Dies ist das grundlegendste Konzept der Zeitreihe. Sie können das Konzept gut kennen. Aber ich fand viele Leute in der Branche, die zufällige Wanderung als stationären Prozess interpretiert. In diesem Abschnitt mit Hilfe einiger Mathematik werde ich dieses Konzept für immer kristallklar machen. Let8217s nehmen ein Beispiel. Beispiel: Stellen Sie sich ein Mädchen vor, das sich auf einem riesigen Schachbrett zufällig bewegt. In diesem Fall ist die nächste Position des Mädchens nur von der letzten Position abhängig. Nun stell dir vor, du sitzt in einem anderen Raum und kannst das Mädchen nicht sehen. Sie wollen die Position des Mädchens mit der Zeit vorherzusagen. Wie genau wirst du sein Natürlich wirst du mehr und mehr ungenau werden, wenn sich die Position des Mädchens ändert. Bei t0 genau wissen, wo das Mädchen ist. Das nächste Mal kann sie nur auf 8 Plätze zu bewegen und damit Ihre Wahrscheinlichkeit Dips auf 1/8 statt 1 und es geht weiter nach unten. Jetzt wollen wir diese Reihe formulieren: wobei Er (t) der Fehler zum Zeitpunkt t ist. Dies ist die Zufälligkeit, die das Mädchen zu jedem Zeitpunkt bringt. Nun, wenn wir rekursiv in alle Xs passen, werden wir schließlich bis zu der folgenden Gleichung: Jetzt können wir versuchen, Validierung unserer Annahmen von stationären Serien auf dieser zufälligen Wanderung Formulierung: 1. Ist die mittlere Konstante Wir wissen, dass die Erwartung eines Irrtums Wird Null sein, da es zufällig ist. Daher erhält man EX (t) EX (0) Konstante. 2. Ist die Variance konstant, so folgt daraus, daß die zufällige Wanderung kein stationärer Vorgang ist, da sie eine zeitvariante Varianz aufweist. Auch, wenn wir die Kovarianz zu überprüfen, sehen wir, dass auch von der Zeit abhängig ist. Let8217s würzen Dinge ein bisschen, Wir wissen bereits, dass ein zufälliger Weg ist ein nicht-stationärer Prozess. Lassen Sie uns einen neuen Koeffizienten in der Gleichung einführen, um zu sehen, ob wir die Formulierung stationär machen können. Eingeführter Koeffizient. Rho Nun werden wir den Wert von Rho variieren, um festzustellen, ob wir die Serie stationär machen können. Hier werden wir die Streuung visuell interpretieren und keinen Test machen, um die Stationarität zu überprüfen. Let8217s beginnen mit einer perfekt stationären Serie mit Rho 0. Hier ist die Handlung für die Zeitreihen: Erhöhen Sie den Wert von Rho auf 0,5 gibt uns folgende Grafik: Sie könnten feststellen, dass unsere Zyklen haben sich breiter, aber im Grunde scheint es nicht zu sein Schwere Verletzung von stationären Annahmen. Let8217s nehmen jetzt einen extremeren Fall von Rho 0.9 Wir sehen noch, dass das X von extremen Werten nach einigen Intervallen wieder auf Null zurückkehrt. Auch diese Serie verletzt nicht die Nicht-Stationarität signifikant. Nun, let8217s nehmen einen Blick auf die zufällige Wanderung mit Rho 1. Dies ist offensichtlich eine Verletzung zu stationären Bedingungen. Was rho 1 zu einem Sonderfall macht, der bei stationärem Test schlecht auftritt, wird die mathematische Vernunft dazu finden. Vielen Dank im Voraus. D. h.


No comments:

Post a Comment