Sunday, 11 June 2017

Exponentiell Gewichtet

Weighted Moving Averages: Die Grundlagen Im Laufe der Jahre haben Techniker zwei Probleme mit dem einfachen gleitenden Durchschnitt gefunden. Das erste Problem liegt im Zeitrahmen des gleitenden Durchschnitts (MA). Die meisten technischen Analysten glauben, dass Preis-Aktion. Der Eröffnungs - oder Schlussaktienkurs, reicht nicht aus, um davon abhängen zu können, ob Kauf - oder Verkaufssignale der MAs-Crossover-Aktion richtig vorhergesagt werden. Zur Lösung dieses Problems weisen die Analysten den jüngsten Preisdaten nun mehr Gewicht zu, indem sie den exponentiell geglätteten gleitenden Durchschnitt (EMA) verwenden. (Erfahren Sie mehr bei der Exploration der exponentiell gewogenen gleitenden Durchschnitt.) Ein Beispiel Zum Beispiel, mit einem 10-Tage-MA, würde ein Analytiker den Schlusskurs des 10. Tag nehmen und multiplizieren Sie diese Zahl mit 10, der neunte Tag um neun, der achte Tag um acht und so weiter auf die erste der MA. Sobald die Summe bestimmt worden ist, würde der Analytiker dann die Zahl durch die Addition der Multiplikatoren dividieren. Wenn Sie die Multiplikatoren des 10-Tage-MA-Beispiels hinzufügen, ist die Zahl 55. Dieses Kennzeichen wird als linear gewichteter gleitender Durchschnitt bezeichnet. (Für verwandte Themen lesen Sie in Simple Moving Averages machen Trends Stand Out.) Viele Techniker sind fest davon überzeugt, in der exponentiell geglättet gleitenden Durchschnitt (EMA). Dieser Indikator wurde auf so viele verschiedene Weisen erklärt, dass er Studenten und Investoren gleichermaßen verwirrt. Vielleicht die beste Erklärung kommt von John J. Murphys Technische Analyse der Finanzmärkte, (veröffentlicht von der New York Institute of Finance, 1999): Der exponentiell geglättete gleitende Durchschnitt behebt beide Probleme mit dem einfachen gleitenden Durchschnitt verbunden. Erstens weist der exponentiell geglättete Durchschnitt den neueren Daten ein größeres Gewicht zu. Daher ist es ein gewichteter gleitender Durchschnitt. Doch während es den vergangenen Preisdaten eine geringere Bedeutung zuweist, enthält es in seiner Berechnung alle Daten in der Lebensdauer des Instruments. Zusätzlich ist der Benutzer in der Lage, die Gewichtung anzupassen, um ein größeres oder geringeres Gewicht zu dem letzten Tagespreis zu ergeben, der zu einem Prozentsatz des vorherigen Tageswertes addiert wird. Die Summe der beiden Prozentwerte addiert sich zu 100. Beispielsweise könnte dem letzten Tagespreis ein Gewicht von 10 (.10) zugewiesen werden, das zum vorherigen Tagegewicht von 90 (.90) addiert wird. Das ergibt den letzten Tag 10 der Gesamtgewichtung. Dies wäre das Äquivalent zu einem 20-Tage-Durchschnitt, indem die letzten Tage Preis einen kleineren Wert von 5 (.05). Abbildung 1: Exponentiell geglättete gleitende Durchschnittswerte Die obige Grafik zeigt den Nasdaq Composite Index von der ersten Woche im Aug. 2000 bis zum 1. Juni 2001. Wie Sie deutlich sehen können, ist die EMA, die in diesem Fall die Schlusskursdaten über eine Neun-Tage-Zeitraum, hat endgültige Verkaufssignale am 8. September (gekennzeichnet durch einen schwarzen Pfeil nach unten). Dies war der Tag, an dem der Index unter dem Niveau von 4.000 unterbrach. Der zweite schwarze Pfeil zeigt ein anderes Bein, das die Techniker tatsächlich erwartet hatten. Der Nasdaq konnte nicht genug Volumen und Interesse von den Kleinanlegern erzeugen, um die 3.000 Marke zu brechen. Danach tauchte es wieder zu Boden, um 1619.58 am 4. April. Der Aufwärtstrend vom 12. April ist durch einen Pfeil markiert. Hier schloss der Index bei 1.961,46, und Techniker begannen zu sehen, institutionelle Fondsmanager ab, um einige Schnäppchen wie Cisco, Microsoft und einige der energiebezogenen Fragen abholen. (Lesen Sie unsere verwandten Artikel: Moving Average Umschläge: Verfeinern eines beliebten Trading-Tool und Moving Average Bounce.) Berechnen EWMA-Korrelation mit Excel Wir hatten vor kurzem gelernt, wie man die Volatilität mit EWMA exponentiell gewichteten Moving Average schätzen. Wie wir wissen, vermeidet EWMA die Fallstricke von gleich gewichteten Durchschnitten, da es den neueren Beobachtungen gegenüber den älteren Beobachtungen mehr Gewicht verleiht. Also, wenn wir extreme Renditen in unseren Daten, wie die Zeit vergeht, werden diese Daten älter und wird weniger Gewicht in unserer Berechnung. In diesem Artikel werden wir untersuchen, wie wir die Korrelation mit EWMA in Excel berechnen können. Wir wissen, daß die Korrelation nach folgender Formel berechnet wird: Der erste Schritt besteht darin, die Kovarianz zwischen den beiden Rückkehrserien zu berechnen. Wir verwenden den Glättungsfaktor Lambda 0.94, wie er in RiskMetrics verwendet wird. Betrachten wir die folgende Gleichung: Wir verwenden die quadrierten Renditen r 2 als Reihe x in dieser Gleichung für Varianzvorhersagen und Kreuzprodukte von zwei Renditen als die Reihe x in der Gleichung für Kovarianzprognosen. Beachten Sie, dass das gleiche Lambda für alle Varianzen und Kovarianz verwendet wird. Der zweite Schritt besteht darin, die Varianzen und die Standardabweichung jeder Rückkehrreihe zu berechnen, wie in diesem Artikel beschrieben. Berechnen Sie die historische Volatilität mit EWMA. Der dritte Schritt besteht darin, die Korrelation durch Einstecken der Werte von Kovarianz und Standardabweichungen in der oben angegebenen Formel für die Korrelation zu berechnen. Die folgende Excel-Tabelle liefert ein Beispiel für die Korrelation und die Volatilitätsberechnung in Excel. Es nimmt die Log-Rückkehr von zwei Aktien und berechnet die Korrelation zwischen ihnen. Berechnen Historische Volatilität mit EWMA Volatilität ist die am häufigsten verwendete Maß für das Risiko. Die Volatilität in diesem Sinne kann entweder eine historische Volatilität (eine aus früheren Daten beobachtete) oder eine Volatilität (beobachtet aus Marktpreisen von Finanzinstrumenten) sein. Die historische Volatilität kann auf drei Arten berechnet werden: Einfache Volatilität, exponentiell gewichtetes Wachstum Durchschnitt (EWMA) GARCH Einer der großen Vorteile von EWMA ist, dass es mehr Gewicht auf die jüngsten Erträge bei der Berechnung der Renditen gibt. In diesem Artikel werden wir untersuchen, wie die Volatilität mit EWMA berechnet wird. Wenn wir die Aktienkurse anschauen, können wir die täglichen logarithmischen Renditen unter Verwendung der Formel ln (P i / P i -1) berechnen, wobei P für P steht Jeder Tag schließt Aktienkurs. Wir müssen das natürliche Protokoll verwenden, weil wir die Renditen kontinuierlich erweitern wollen. Wir haben jetzt täglich Rücksendungen für die gesamte Preisreihe. Schritt 2: Platzieren Sie die Rückkehr Der nächste Schritt ist die nehmen das Quadrat der langen Rückkehr. Dies ist tatsächlich die Berechnung der einfachen Varianz oder der Volatilität, die durch die folgende Formel dargestellt wird: Hier steht u für die Rendite und m für die Anzahl der Tage. Schritt 3: Gewichte Zuweisen Gewichte zuweisen, so dass die jüngsten Renditen ein höheres Gewicht haben und ältere Renditen weniger Gewicht haben. Dazu benötigen wir einen Faktor Lambda (), eine Glättungskonstante oder einen persistenten Parameter. Die Gewichte werden als (1-) 0 zugewiesen. Lambda muss kleiner als 1 sein. Risikometrik verwendet Lambda 94. Das erste Gewicht ist (1-0,94) 6, das zweite Gewicht ist 60,94 5,64 und so weiter. In EWMA summieren sich alle Gewichte auf 1, jedoch sinken sie mit einem konstanten Verhältnis von. Schritt 4: Multiplizieren Rückkehr-quadriert mit den Gewichten Schritt 5: Nehmen Sie die Summe von R 2 w Dies ist die abschließende EWMA-Varianz. Die Volatilität ist die Quadratwurzel der Varianz. Der folgende Screenshot zeigt die Berechnungen. Das obige Beispiel, das wir gesehen haben, ist der von RiskMetrics beschriebene Ansatz. Die generalisierte Form von EWMA kann als die folgende rekursive Formel dargestellt werden: 1 KommentarExponential Moving Average - EMA Laden des Players. BREAKING DOWN Exponential Moving Average - EMA Die 12- und 26-Tage-EMAs sind die beliebtesten Kurzzeitmittelwerte und werden verwendet, um Indikatoren wie die gleitende durchschnittliche Konvergenzdivergenz (MACD) und den prozentualen Preisoszillator (PPO) zu erzeugen. Im Allgemeinen werden die 50- und 200-Tage-EMAs als Signale von langfristigen Trends verwendet. Trader, die technische Analyse verwenden finden fließende Mittelwerte sehr nützlich und aufschlussreich, wenn sie richtig angewendet werden, aber Chaos verursachen, wenn sie falsch verwendet werden oder falsch interpretiert werden. Alle gleitenden Durchschnitte, die gewöhnlich in der technischen Analyse verwendet werden, sind von Natur aus nacheilende Indikatoren. Folglich sollten die Schlussfolgerungen aus der Anwendung eines gleitenden Durchschnitts auf ein bestimmtes Marktdiagramm eine Marktbewegung bestätigen oder ihre Stärke belegen. Sehr oft, bis eine gleitende durchschnittliche Indikatorlinie eine Änderung vorgenommen hat, um eine bedeutende Bewegung auf dem Markt zu reflektieren, ist der optimale Punkt des Markteintritts bereits vergangen. Eine EMA dient dazu, dieses Dilemma zu einem gewissen Grad zu lindern. Da die EMA-Berechnung mehr Gewicht auf die neuesten Daten setzt, umgibt sie die Preisaktion etwas fester und reagiert damit schneller. Dies ist wünschenswert, wenn ein EMA verwendet wird, um ein Handelseintragungssignal abzuleiten. Interpretation der EMA Wie alle gleitenden Durchschnittsindikatoren sind sie für Trendmärkte viel besser geeignet. Wenn der Markt in einem starken und anhaltenden Aufwärtstrend ist. Zeigt die EMA-Indikatorlinie auch einen Aufwärtstrend und umgekehrt einen Abwärtstrend. Ein wachsamer Händler achtet nicht nur auf die Richtung der EMA-Linie, sondern auch auf das Verhältnis der Änderungsgeschwindigkeit von einem Balken zum nächsten. Wenn zum Beispiel die Preisaktion eines starken Aufwärtstrends beginnt, sich zu verflachen und umzukehren, wird die EMA-Rate der Änderung von einem Balken zum nächsten abnehmen, bis zu dem Zeitpunkt, zu dem die Indikatorlinie flacht und die Änderungsrate null ist. Wegen der nacheilenden Wirkung, von diesem Punkt, oder sogar ein paar Takte zuvor, sollte die Preisaktion bereits umgekehrt haben. Daraus folgt, dass die Beobachtung eines konsequenten Abschwächens der Veränderungsrate der EMA selbst als Indikator genutzt werden könnte, der das Dilemma, das durch den nacheilenden Effekt von gleitenden Durchschnittswerten verursacht wird, weiter beheben könnte. Gemeinsame Verwendung der EMA-EMAs werden häufig in Verbindung mit anderen Indikatoren verwendet, um signifikante Marktbewegungen zu bestätigen und deren Gültigkeit zu messen. Für Händler, die intraday und schnelllebigen Märkten handeln, ist die EMA mehr anwendbar. Häufig benutzen Händler EMAs, um eine Handel Bias zu bestimmen. Zum Beispiel, wenn eine EMA auf einer Tages-Chart einen starken Aufwärtstrend zeigt, kann eine Intraday-Trader-Strategie, nur von der langen Seite auf einer Intraday-Chart handeln. EWMA 101 Der EWMA-Ansatz hat ein attraktives Merkmal: Es erfordert relativ wenig gespeicherte Daten . Um unsere Schätzung an jedem Punkt zu aktualisieren, benötigen wir nur eine vorherige Schätzung der Varianzrate und des jüngsten Beobachtungswertes. Ein weiteres Ziel der EWMA ist es, Veränderungen in der Volatilität nachzuvollziehen. Für kleine Werte beeinflussen jüngste Beobachtungen die Schätzung zeitnah. Für Werte, die näher an einem liegen, ändert sich die Schätzung langsam auf der Grundlage der jüngsten Änderungen in den Renditen der zugrundeliegenden Variablen. Die von JP Morgan erstellte und öffentlich zugängliche RiskMetrics-Datenbank nutzt die EWMA zur Aktualisierung der täglichen Volatilität. WICHTIG: Die EWMA-Formel geht nicht von einem lang anhaltenden durchschnittlichen Varianzniveau aus. So bedeutet das Konzept der Volatilität Reversion nicht von der EWMA erfasst. Die ARCH / GARCH Modelle sind dafür besser geeignet. Lambda Ein sekundäres Ziel der EWMA ist es, Veränderungen in der Volatilität nachzuvollziehen, so dass für kleine Werte die jüngsten Beobachtungen die Schätzung sofort beeinflussen, und für Werte, die näher an einem liegen, ändert sich die Schätzung langsam auf die jüngsten Änderungen der Renditen der zugrunde liegenden Variablen. Die RiskMetrics-Datenbank (erstellt von JP Morgan), die 1994 veröffentlicht wurde, verwendet das EWMA-Modell zur Aktualisierung der täglichen Volatilitätsschätzung. Das Unternehmen festgestellt, dass über eine Reihe von Marktvariablen, gibt dieser Wert der Prognose der Varianz, die am nächsten zu realisierten Varianz Rate kommen. Die realisierten Varianzraten an einem bestimmten Tag wurden als gleichgewichteter Durchschnitt der folgenden 25 Tage berechnet. Um den optimalen Wert von lambda für unseren Datensatz zu berechnen, müssen wir die realisierte Volatilität an jedem Punkt berechnen. Es gibt mehrere Methoden, so wählen Sie ein. Als nächstes wird die Summe der quadratischen Fehler (SSE) zwischen der EWMA-Schätzung und der realisierten Volatilität berechnet. Schließlich minimieren die SSE durch Variieren des Lambdawertes. Klingt einfach Es ist. Die größte Herausforderung besteht darin, einen Algorithmus zur Berechnung der realisierten Volatilität zu vereinbaren. Zum Beispiel wählten die Leute bei RiskMetrics die folgenden 25 Tage, um die realisierte Varianzrate zu berechnen. In Ihrem Fall können Sie einen Algorithmus wählen, der Tägliche Volumen-, HI / LO - und / oder OPEN-CLOSE Preise nutzt. FAQ Q 1: Können wir EWMA nutzen, um die Volatilität mehr als einen Schritt voraus zu schätzen (oder prognostizieren) Die EWMA-Volatilitätsdarstellung setzt keine langfristige Durchschnittsvolatilität voraus, so dass die EWMA für jeden Prognosehorizont über einen Schritt hinaus a konstanter Wert:


No comments:

Post a Comment